Add like
Add dislike
Add to saved papers

Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.

ACS Synthetic Biology 2018 September 22
2-Pyrone-4,6-dicarboxylic acid (PDC) is a pseudoaromatic dicarboxylic acid and is a promising biobased building block chemical that can be used to make diverse polyesters with novel functionalities. In this study, Escherichia coli was metabolically engineered to produce PDC from glucose. First, an efficient biosynthetic pathway for PDC production from glucose was suggested by in silico metabolic flux simulation. This best pathway employs a single-step biosynthetic route to protocatechuic acid (PCA), a metabolic precursor for PDC biosynthesis. On the basis of the selected PDC biosynthetic pathway, a shikimate dehydrogenase (encoded by aroE)-deficient E. coli strain was engineered by introducing heterologous genes of different microbial origin encoding enzymes responsible for converting 3-dehydroshikimate (DHS) to PDC, which allowed de novo biosynthesis of PDC from glucose. Next, production of PDC was further improved by applying stepwise rational metabolic engineering strategies. These include elimination of feedback inhibition on 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (encoded by aroG) by overexpressing a feedback-resistant variant, enhancement of the precursor phosphoenolpyruvate supply by changing the native promoter of the ppsA gene with the strong trc promoter, and reducing accumulation of the major byproduct DHS by overexpression of a DHS importer (encoded by shiA). Furthermore, cofactor (NADP+ /NADPH) utilization was manipulated through genetic modifications of the E. coli soluble pyridine nucleotide transhydrogenase (encoded by sthA), and the resultant impact on PDC production was investigated. Fed-batch fermentation of the final engineered E. coli strain allowed production of 16.72 g/L of PDC from glucose with the yield and productivity of 0.201 g/g and 0.172 g/L/h, respectively, representing the highest PDC production performance indices reported to date.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app