Add like
Add dislike
Add to saved papers

Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures.

The cation substitutional doping of metal oxide semiconductors plays pivotal roles in improving the gas sensing performances, but the doping effect on surface sensing reaction is still not well understood. In this study, indium oxides doped with various heteroatoms are investigated to obtain in-depth understanding of how doping (or the resulting change in the electronic structure) alters the surface-absorbed oxygen chemistry and subsequent sensing process. The experimental results reveal that energy level of In2 O3 can be modulated by introduction of these dopants, some of which (e.g., Al, Ga, and Zr) lead to the elevation of Fermi level, whereas others (e.g., Ti, V, Cr, Mo, W, and Sn) bring about relative drop in Fermi level. However, only the former can improve the response to formaldehyde, indicating a strong link between Fermi level and sensing properties. Mechanistic study suggests that the elevation of Fermi level increases energy level difference between oxide semiconductor and oxygen molecules and facilitates the surface absorption of oxygen species, resulting in superior formaldehyde sensing activity. Especially, Al-doped In2 O3 exhibits remarkably enhanced sensing performances toward formaldehyde at low working temperature (150 °C) with high response, good selectivity, ultralow limit of detection (60 ppb), and short response time (2-23 s). Our findings not only promote the understanding of sensing reaction process and its correlation with the semiconductor electronic structure but also offer a general guideline for large-scale screening of promising oxide semiconductor-based sensing materials for gas detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app