Add like
Add dislike
Add to saved papers

Switchable Rashba effect by dipole moment switching in an Ag 2 Te monolayer.

Because of the surface depolarization field, there is a critical thickness for ferroelectricity in ultrathin ferroelectric films, hindering miniaturization of high-density nonvolatile memory storage devices. A controllable Rashba effect by external electric field via switchable dipole moment could be a promising way to control and manipulate the spin degrees of freedom in spintronics. Here, based on first principles calculations, we show that non-planar Ag2 Te monolayer, which has been recently predicted to be a topological insulator, possess a switchable out-of-plane electric dipole moment. The switching of the dipole can be realized by the penetration of Te atoms through the hexagonal Ag-plane. Additionally, non-planar Ag2 Te shows a giant Rashba spin-splitting ([Formula: see text] eV Å) due to the out-of-plane electric dipole moment. Our tight binding model indicates that the origin of such large [Formula: see text] is the large inversion symmetry breaking term ([Formula: see text] eV), which is one order of magnitude larger in non-planar Ag2 Te monolayer compared with other Rashba materials. Interestingly, the Rashba effect can be turned on/off by the phase transition from non-planar to planar structure via Te displacement. Moreover, the spin-texture can be completely reversed because of switchable electric dipole moment. Our work shows a new way to realize ferroelectric-like dipole moment switching and consequently switchable Rashba spin-splitting, which may facilitate a nonvolatile electrical control of the spin degrees of freedom, down to the monolayer thickness, promising potential applications to electrically controlled spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app