Add like
Add dislike
Add to saved papers

Rational Design of Two-dimensional Anode Materials: B 2 S as a Strained Graphene.

Alkali metal atom adsorption energy is an important descriptor for anode material design. In this study, an energy decomposition model is developed to provide valuable insights in understanding how the adsorption behavior can be tuned. As an example, Li adsorption on graphene enhanced by a tensile strain is analyzed based on this model. Such an analysis then motivates us to find a system with similar electronic structure but larger lattice parameter compared to graphene as an anode material. Our first-principles calculations indicate that B2 S, as an isoelectronic system of graphene, is a good candidate. Its capacity is as high as 1498 mA h g-1 for both Li and Na ion batteries. Li and Na diffusion barriers on B2 S are 0.45 and 0.23 eV, respectively. This study opens a new avenue for adsorption-behavior-guided two-dimensional material design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app