Add like
Add dislike
Add to saved papers

Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.

This paper presents the design, construction, and testing of a magnetic particle relaxometer (MPR) to assess magnetic nanoparticle response to dynamic magnetic fields while subjected to a bias field. The designed MPR can characterize magnetic particles for use as tracers in magnetic particle imaging (MPI), with the variation of an applied bias field emulating the scan of the MPI field free point. The system applies a high-frequency time-varying excitation field (up to 45 mT at 30 kHz), while slowly ramping a bias field (±100 mT in 1 s). The time-resolved response of the sample is measured using an inductive sensing coil system, made of a pick-up coil and a rotating and translating balancing coil to finely cancel the induction feed-through from the excitation field. A post-processing algorithm is presented to extract the tracer response related to the point spread function for MPI applications, and the performance of the MPR is demonstrated using superparamagnetic iron oxide particles (ferucarbotran).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app