Add like
Add dislike
Add to saved papers

Effect of nanostructures on anchoring stem cell-derived neural tissue to artificial surfaces.

OBJECTIVE: Chronic application of brain implants monitoring or modulating neuronal activity are hindered by the foreign body response of the tissue. Topographical modification of implant surfaces may reduce negative tissue response by imitating the structure of the extracellular matrix and therefore affecting the attachment and behavior of neural cells.

APPROACH: In our in vitro study, the effect of nanostructuring was investigated on two commercially used neural implant materials: silicon and platinum. The adhesion, survival and arrangement of neural stem cells (NE4C) and microglial cells (BV2) were investigated and compared to nanostructured and flat Si and Pt surfaces using cell viability studies and fluorescent microscopy image analysis.

MAIN RESULTS: Our data indicated that neural cells established strong adhesive couplings with each other, instead of binding to the artificial surfaces.

SIGNIFICANCE: The phenomena resemble some features of in vivo separation of living tissue from the implanted artificial material, providing an in vitro model for studying immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app