Add like
Add dislike
Add to saved papers

Circulating monocytes from prostate cancer patients promote invasion and motility of epithelial cells.

Cancer Medicine 2018 September
BACKGROUND: Recruited myeloid cells are known to promote cancer initiation, malignant progression, metastasis, and resistance to therapy in the tumor niche. We tested the hypothesis that circulating blood monocytes from advanced prostate cancer (PCa) patients exhibit a protumor phenotype and directly influence the tumor microenvironment in response to tumor-derived signals.

METHODS: Blood monocytes from advanced and stable PCa patients were cultured, and the conditioned media (CM) were collected and analyzed using standard invasion and wound closure assays to measure effects on invasion and motility of PCa tumor cells. We then identified the proteome profile of these monocytes using proteome array and ELISA.

RESULTS: Conditioned media from circulating monocytes in patients with metastatic prostate cancer (PCa-M) increased invasion of epithelial PCa cells in vitro. Proteome Profiler Analysis revealed that monocyte-derived CM from metastatic castration-resistant (mCRPC) patients presented high levels of chitinase-3-like 1 (CHI3L1, YKL-40) when compared to patients with stable disease (PCa-N) and healthy control individuals (HC). The only described receptor for CHI3L1, interleukin-13 receptor α2 (IL-13Rα2), was significantly up-regulated in the human metastatic PCa cell line, ARCaPM . Accordingly, we observed that the activation of IL-13Rα2 from PCa-M CM increased the invasiveness of ARCaPM cells while siRNA directed against this receptor significantly reduced invasiveness of these cells in the presence of CM from PCa-M patients.

CONCLUSIONS: Thus, we show that circulating monocytes from metastatic PCa patients exert a tumor-promoting role via the secretion of CHI3L1, and CHI3L1 demands further exploration as a possible therapeutic target in advanced PCa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app