Add like
Add dislike
Add to saved papers

A Model for the Acrosome Reaction in Mammalian Sperm.

The acrosome reaction is a complex, calcium-dependent reaction that results in an exocytotic event required for successful fertilization of the egg. It has long been thought that the acrosome reaction occurs upon sperm binding to the zona pellucida, a viscoelastic layer surrounding the oocyte. Recent studies have suggested that the reaction may even occur before the sperm encounters the zona, perhaps mediated by progesterone or some other agonist. It has been particularly difficult to understand differences between progesterone-induced and zona-induced reactions experimentally and whether one substance is the more biologically relevant trigger. Until this present work, there has been little effort to mathematically model the acrosome reaction in sperm as a whole. Instead, attention has been paid to modeling portions of the pathways involved in other cell types. Here we present a base model for the acrosome reaction which characterizes the known biochemical reactions and behaviors of the system. Our model allows us to analyze several pathways that may act as a stabilizing mechanism for avoiding sustained oscillatory calcium responses often observed in other cell types. Such an oscillatory regime might otherwise prevent acrosomal exocytosis and therefore inhibit fertilization. Results indicate that the acrosome reaction may rely upon multiple redundant mechanisms to avoid entering an oscillatory state and instead maintain a high resting level of calcium, known to be required for successful acrosomal exocytosis and, ultimately, fertilization of the oocyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app