Add like
Add dislike
Add to saved papers

Lacidipine Amorphous Solid Dispersion Based on Hot Melt Extrusion: Good Miscibility, Enhanced Dissolution, and Favorable Stability.

AAPS PharmSciTech 2018 October
The present study aimed to increase the in vitro dissolution rate of lacidipine, a poorly water-soluble drug, by formulating amorphous solid dispersions (ASDs) using hot-melt extrusion (HME). Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, and Fourier transform infrared were used to characterize the optimal formulations and evaluate the physical stability for the stress test. Film-casting method and hot-stage microscopy were applied to study the miscibility of lacidipine and the drug carriers. In vitro dissolution tests were conducted as the final evaluation index. The optimal formulations were successfully obtained with Soluplus and PVP VA64 at a drug/carrier ratio of 1:10 (w/w), Fourier transform infrared studies revealed the hydrogen bonding between drug and polymers, and in vitro dissolution rates of the optimal formulations were extremely enhanced compared to bulk lacidipine and physical mixtures, similar with that of the commercial tablet. The ASD formulated with Soluplus showed better physical stability than that with PVP VA64. A strong hydrogen bonding and good drug-polymer miscibility were essential to hinder the recrystallization of lacidipine ASDs. In conclusion, the lacidipine ASD formulated with Soluplus showed a significant increase in in vitro dissolution rate and favorable physical stability in the stress test.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app