Add like
Add dislike
Add to saved papers

Cerebrospinal fluid GAP-43 in early multiple sclerosis.

Background/Objective: Novel biomarkers identifying and predicting disease activity in multiple sclerosis (MS) would be valuable for primary diagnosis and as outcome measures for monitoring therapeutic effects in clinical trials. Axonal loss is present from the earliest stages of MS and correlates with disability measures. Growth-associated protein 43 (GAP-43) is a presynaptic protein with induced expression during axonal growth. We hypothesized this protein could serve as a biomarker of axonal regeneration capacity in MS.

Methods: We developed a novel GAP-43 enzyme-linked immunosorbent assay for quantification in cerebrospinal fluid (CSF) and measured GAP-43 levels in 71 patients with clinically isolated syndrome, 139 MS patients and 51 controls.

Results: GAP-43 concentrations were similar in patients and controls. Nevertheless, GAP-43 levels were higher in patients with >10 T2-magnetic resonance imaging (MRI) lesions ( p  = 0.005). CSF GAP-43 concentrations correlated with CSF mononuclear cell counts ( p  = 0.031) and were inversely correlated with patient age ( p  = 0.038) with a trend for higher CSF GAP-43 concentrations in patients with gadolinium-enhancing MRI lesions and positive CSF oligoclonal immunoglobulin G status.

Conclusion: Our results suggest that axonal regeneration capacity is relatively preserved in early MS. CSF GAP-43 concentration is positively associated with markers of inflammation, suggesting possible inflammatory-driven expression of this growth-associated protein in early MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app