Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics.

Clinical Cancer Research 2019 January 16
PURPOSE: Thyroid cancer is frequently difficult to diagnose due to an overlap of cytologic features between malignant and benign nodules. This overlap leads to unnecessary removal of the thyroid in patients without cancer. While providing some improvement over cytopathologic diagnostics, molecular methods frequently fail to provide a correct diagnosis for thyroid nodules. These approaches are based on the difference between cancer and adjacent thyroid tissue and assume that adjacent tissues are the same as benign nodules. However, in contrast to adjacent tissues, benign thyroid nodules can contain genetic alterations that can be found in cancer. Experimental Design: For the development of a new molecular diagnostic test for thyroid cancer, we evaluated DNA methylation in 109 thyroid tissues by using genome-wide single-base resolution DNA methylation analysis. The test was validated in a retrospective cohort containing 65 thyroid nodules.

RESULTS: By conducting reduced representation bisulfite sequencing in 109 thyroid specimens, we found significant differences between adjacent tissue, benign nodules, and cancer. These tissue-specific signatures are strongly linked to active enhancers and cancer-associated genes. Based on these signatures, we developed a new epigenetic approach for thyroid diagnostics. According to the validation cohort, our test has an estimated specificity of 97% [95% confidence interval (CI), 81-100], sensitivity of 100% (95% CI, 87-100), positive predictive value of 97% (95% CI, 83-100), and negative predictive value of 100% (95% CI, 86-100).

CONCLUSIONS: These data show that epigenetic testing can provide outstanding diagnostic accuracy for thyroid nodules. See related commentary by Mitmaker et al., p. 457 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app