Add like
Add dislike
Add to saved papers

14-3-3γ binds regulator of G protein signaling 14 (RGS14) at distinct sites to inhibit the RGS14:Gα i -AlF 4 - signaling complex and RGS14 nuclear localization.

Regulator of G protein signaling 14 (RGS14) is a multifunctional brain scaffolding protein that integrates G protein and Ras/ERK signaling pathways. It is also a nucleocytoplasmic shuttling protein. RGS14 binds active Gαi/o via its RGS domain, Raf and active H-Ras-GTP via its R1 Ras-binding domain (RBD), and inactive Gαi1/3 via its G protein regulatory (GPR) domain. RGS14 suppresses long-term potentiation (LTP) in the CA2 region of the hippocampus, thereby regulating hippocampally based learning and memory. The 14-3-3 family of proteins is necessary for hippocampal LTP and associative learning and memory. Here, we show direct interaction between RGS14 and 14-3-3γ at two distinct sties, one phosphorylation-independent and the other phosphorylation-dependent at Ser-218 that is markedly potentiated by signaling downstream of active H-Ras. Using bioluminescence resonance energy transfer (BRET), we show that the pSer-218-dependent RGS14/14-3-3γ interaction inhibits active Gαi1 -AlF4 - binding to the RGS domain of RGS14 but has no effect on active H-Ras and inactive Gαi1 -GDP binding to RGS14. By contrast, the phosphorylation-independent binding of 14-3-3 has no effect on RGS14/Gαi interactions but, instead, inhibits (directly or indirectly) RGS14 nuclear import and nucleocytoplasmic shuttling. Together, our findings describe a novel mechanism of negative regulation of RGS14 functions, specifically interactions with active Gαi and nuclear import, while leaving the function of other RGS14 domains intact. Ongoing studies will further elucidate the physiological function of this interaction between RGS14 and 14-3-3γ, providing insight into the functions of both RGS14 and 14-3-3 in their roles in modulating synaptic plasticity in the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app