Add like
Add dislike
Add to saved papers

Cytotoxicity and enzymatic biomarkers as early indicators of benthic responses to the soluble-fraction of diesel oil.

Xenobiotics from oil tanker leaks and industrial discharges are amongst the main human impacts to confined coastal areas. We assessed the genotoxic responses to the water-soluble fraction of diesel oil in the polychaete Laeonereis culveri and the bivalve Anomalocardia flexuosa, two widespread benthic species in subtropical estuaries from the Southwestern Atlantic. We hypothesized that the highest responsiveness would be expressed by significantly different biomarkers responses between control and oil-impacted treatments. Responsiveness to diesel oil was investigated using an experimental design with two fixed factors (contaminant percentages and times of exposure). After exposure, we monitored the responses of the oxidative stress enzymes and performed micronuclei tests. Results were congruent for both species. Antioxidant defense of glutathione S-transferase and the induction of micronuclei and nuclear buds, the latter just for the bivalve, were significantly affected by polycyclic aromatic hydrocarbons, with significant increases on the seventh day of exposure and in the higher concentrations, compared to controls groups. We assessed the benefits and drawbacks of using each biomarker in laboratory experiments. Both species are indicators of early, and rapid responses to genotoxic contaminants in subtropical estuarine habitats. We suggest that the micronuclei frequency in A. flexuosa is a simple, fast and cheap test for genotoxicity in oil-impacted areas. Such early biomarkers are needed to develop better protocols for impact assessment and monitoring under real field conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app