Add like
Add dislike
Add to saved papers

Design, synthesis and pharmacological evaluation of new 3-(1H-benzimidazol-2-yl)quinolin-2(1H)-one derivatives as potential antitumor agents.

A series of new 3-(1H-benzimidazol-2-yl)quinolin-2(1H)-one derivatives (5a1 -5d6 ) were designed and synthesized as antitumor agents. In vitro antitumor assay results showed that some compounds exhibited moderate to high inhibitory activity against HepG2, SK-OV-3, NCI-H460 and BEL-7404 tumor cell lines, and most compounds exhibited much lower cytotoxicity against the HL-7702 normal cell line compared to 5-FU and cisplatin. In vivo antitumor assay results demonstrated that 5a3 exhibited effective inhibition on tumor growth in the NCI-H460 xenograft mouse model and that 5d3 displayed excellent antiproliferative activity in the BEL-7402 xenograft model. These results suggested that both 5a3 and 5d3 could be used as anticancer drug candidates. Mechanistic studies suggested that compounds 5a3 and 5d3 exerted their antitumor activity by up-regulation of Bax, intracellular Ca2+ release, ROS generation, downregulation of Bcl-2, activation of caspase-9 and caspase-3 and subsequent cleavage of PARP, inhibition of CDK activity and activation of the p53 protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app