Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice.

Addiction Biology 2019 September
Drug addiction is a chronic and relapsing brain disorder, influenced by complex interactions between endogenous and exogenous factors. Per2, a circadian gene, plays a role in drug addiction. Previous studies using Per2-knockout mice have shown a role for Per2 in cocaine, morphine and alcohol addiction. In the present study, we investigated the role of Per2 in methamphetamine (METH) addiction using Per2-overexpression and knockout mice. We observed locomotor sensitization responses to METH administration, and rewarding effects using a conditioned place preference test. In addition, we measured expression levels of dopamine and dopamine-related genes (monoamine oxidase A, DA receptor 1, DA receptor 2, DA active transporter, tyrosine hydroxylase and cAMP response element-binding protein 1) in the striatum of the mice after repeated METH treatments, using qRT-PCR. Per2-overexpressed mice showed decreased locomotor sensitization and rewarding effects of METH compared to the wildtype mice, whereas the opposite was observed in Per2 knockout mice. Both types of transgenic mice showed altered expression levels of dopamine-related genes after repeated METH administration. Specifically, we observed lower dopamine levels in Per2-overexpressed mice and higher levels in Per2-knockout mice. Taken together, Per2 expression levels may influence the addictive effects of METH through the dopaminergic system in the striatum of mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app