Add like
Add dislike
Add to saved papers

Cholesterol depletion enhances TGF-β Smad signaling by increasing c-Jun expression through a PKR-dependent mechanism.

Transforming growth factor-β (TGF-β) plays critical roles in numerous physiological and pathological responses. Cholesterol, a major plasma membrane component, can have pronounced effects on signaling responses. Cells continually monitor cholesterol content and activate multilayered transcriptional and translational signaling programs, following perturbations to cholesterol homeostasis (e.g., statins, the commonly used cholesterol-reducing drugs). However, the cross-talk of such programs with ligand-induced signaling responses (e.g., TGF-β signaling) remained unknown. Here, we studied the effects of a mild reduction in free (membrane-associated) cholesterol on distinct components of TGF-β-signaling pathways. Our findings reveal a new regulatory mechanism that enhances TGF-β-signaling responses by acting downstream from receptor activation. Reduced cholesterol results in PKR-dependent eIF2α phosphorylation, which enhances c-Jun translation, leading in turn to higher levels of JNK-mediated c-Jun phosphorylation. Activated c-Jun enhances transcription and expression of Smad2/3. This leads to enhanced sensitivity to TGF-β stimulation, due to increased Smad2/3 expression and phosphorylation. The phospho/total Smad2/3 ratio remains unchanged, indicating that the effect is not due to altered receptor activity. We propose that cholesterol depletion induces overactivation of PKR, JNK, and TGF-β signaling, which together may contribute to the side effects of statins in diverse disease settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app