Add like
Add dislike
Add to saved papers

Luminescent Hybrid Membrane-Based Logic Device: From Enantioselective Discrimination to Read-Only Memory for Information Processing.

Logic circuit device and molecular computer are idealized binary tools that implement manifold signal transformation and operation and is a basic component of integrated circuits and is widely used in computer, computerized numerical control, and communication fields. By combining the advantages of synthetic feasibility and enantioselective luminescent recognition, a logic device based on the lanthanide functional membrane has been constructed to effectively recognize the enantiomer and judge the enantiomer excess of the chair drug mixture. In addition, it would be interesting if such a logic circuit could be assembled into a loop circuit to realize intelligent control of the electronic component. Read-only memory arrays built by the logic circuit are also actualized, which can be converted and stored in binary strings. This work provides an active and universal approach to modulate a luminescent device and logic circuit based on a chemical sensor, with promising application for intelligent control, information processing, and human-machine interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app