Add like
Add dislike
Add to saved papers

Functional characterization of recurrent FOXA2 mutations seen in endometrial cancers.

FOXA2, a member of the forkhead family of DNA-binding proteins, is frequently mutated in uterine cancers. Most of the mutations observed in uterine cancers are frameshifts and stops. FOXA2 is considered to be a driver gene in uterine cancers, functioning as a haploinsufficient tumor suppressor. The functional consequences of FOXA2 mutations, however, have not yet been determined. We evaluated the effects that frameshift mutations and a recurrent missense mutation have on FOXA2 transcriptional activity. Recurrent N-terminal frameshifts resulted in truncated proteins that failed to translocate to the nucleus and have no transcriptional activity using an E-cadherin/luciferase reporter assay. Protein abundance was reduced for the recurrent p.S169 W mutation, as was transcriptional activity. A C-terminal frameshift mutation had increased FOXA2 levels evidenced by both Western blot and immunofluorescence. Given that FOXA2 is a recognized activator of E-cadherin (CDH1) expression and E-cadherin's potential role in epithelial-to-mesenchymal transition in a wide range of cancer types, we tested the hypothesis that FOXA2 mutations in primary uterine cancer specimens would be associated with reduced CDH1 transcript levels. qRT-PCR revealed significantly lower levels of CDH1 expression in primary tumors with FOXA2 mutations. Our findings in vitro and in vivo suggest that reduced transcriptional activity associated with FOXA2 mutations in uterine cancers is likely to contribute to protumorigenic changes in gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app