Add like
Add dislike
Add to saved papers

Heat-loving β-Galactosidases from Cultured and Uncultured Microorganisms.

β-galactosidases (EC.3.2.1.23), which hydrolyze lactose to glucose and galactose, have two main applications in the food industry: the production of low-lactose milk and dairy goods for lactose intolerant people, and the generation of galacto-oligosaccharides by transgalactosylation reactions. Due to their thermostability, β-galactosidases from thermophilic microorganisms are very interesting for industrial processes, as high temperatures can increase the initial productivity of the enzyme, provide higher solubility of substrates, and prevent microbial contamination. In the past, it was necessary to cultivate and grow thermophilic microorganisms to discover novel thermozymes, but the development of metagenomic techniques has allowed researchers to access the genomic potential of uncultivated microbes and their enzymes. The present review gives a brief outline of thermophilic β-galactosidases, with a special focus on those obtained through metagenomics. Additionally, the sequences of β-galactosidases found in some public metagenomes from hot springs were studied and compared to other known thermostable β-galactosidases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app