Add like
Add dislike
Add to saved papers

XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging miR-155-5p.

Yonsei Medical Journal 2018 September
PURPOSE: The influence of X-inactive specific transcript (XIST) and X-chromosome inactivation associated long non-coding RNAs (lncRNAs) just proximal to XIST (JPX) on hepatocellular carcinoma (HCC) remains controversial in light of previous reports, which the present study aimed to verify.

MATERIALS AND METHODS: The DIANA lncRNA-microRNA (miRNA) interaction database was used to explore miRNA interactions with JPX or XIST. JPX, XIST, and miR-155-5p expression levels in paired HCC specimens and adjacent normal tissue were analyzed by RT-qPCR. Interaction between XIST and miR-155-5p was verified by dual luciferase reporter assay. Expression levels of miR-155-5p and its known target genes, SOX6 and PTEN, were verified by RT-qPCR and Western blot in HepG2 cells with or without XIST knock-in. The potential suppressive role of XIST and JPX on HCC was verified by cell functional assays and tumor formation assay using a xenograft model.

RESULTS: JPX and XIST expression was significantly decreased in HCC pathologic specimens, compared to adjacent tissue, which correlated with HCC progression and increased miR-155-5p expression. Dual luciferase reporter assay revealed XIST as a direct target of miR-155-5p. XIST knock-in significantly reduced miR-155-5p expression level and increased that of SOX6 and PTEN, while significantly inhibiting HepG2 cell growth in vitro, which was partially reversed by miR-155-5p mimic transfection. JPX knock-in significantly increased XIST expression and inhibited HepG2 cell growth in vitro or tumor formation in vivo in a XIST dependent manner.

CONCLUSION: JPX and XIST play a suppressive role in HCC. JPX increases expression levels of XIST in HCC cells, which suppresses HCC development by sponging the cancer promoting miR-155-5p.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app