Add like
Add dislike
Add to saved papers

Three-dimensional kinematics of the canine carpal bones imaged with computed tomography after ex vivo axial limb loading and palmar ligament transection.

Veterinary Surgery 2018 August
OBJECTIVE: To describe normal antebrachiocarpal joint kinematic motion during axial loading and to describe the effect of palmar radiocarpal ligament (PRL) and palmar ulnocarpal ligament (PUL) transection on this motion.

SAMPLE POPULATION: Ten forelimbs from 5 adult greyhound cadavers.

METHODS: Limbs were placed in a custom jig and computed tomography images of limbs were obtained in neutral and extended positions. The translation and rotation of the intermedioradiocarpal bone (RCB), ulnar carpal bone, and accessory carpal bone were described relative to the radius through rigid body motion analysis. Kinematic and load analysis was repeated after sequential transection of the PRL and the PUL.

RESULTS: Sagittal plane extension with a lesser component of valgus motion was found in all evaluated carpal bones. RCB supination was also detected during extension. Compared with the normal intact limb, transection of either or both the PRL and the PUL did not influence mean translation or rotation data or limb load. However, the transection of the PRL and the PUL increased the variance in rotation data compared with intact limb.

CONCLUSION: This study describes normal antebrachiocarpal kinematics as a foundation for determining carpal functional units. During axial loading, the PRL and the PUL may function to guide consistent motion in extension and flexion as well as pronation and supination.

CLINICAL SIGNIFICANCE: Three-dimensional carpal kinematic analyses may improve our understanding of carpal injury and facilitate the development of novel treatments techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app