Add like
Add dislike
Add to saved papers

Effect of microparticulation and xanthan gum on the stability and lipid digestion of oil-in-water emulsions stabilized by whey protein.

Food & Function 2018 September 20
Since lipid digestion is an interfacial process, food emulsions are increasingly being seen as a mechanism for controlling lipid uptake. Oil-in-water emulsions stabilized by whey protein (WP) and protein-xanthan gum (XG) mixtures were designed to investigate the influence of interfacial structures on lipid digestion using an in vitro digestion model. The interfacial layers with different structures were designed using microparticulated whey protein (MWP) and MWP-XG mixtures. The increase in the volume average diameter of proteins indicated that the WPs aggregated to form micro-particles during microparticulation. The increase in the protein surface hydrophobicity index and the measurement results from the Magnetic Resonance Imaging System indicated that the protein hydrophilic groups were embedded and that the protein hydrophobic groups were exposed. Under in vitro conditions, the emulsions stabilized by microparticulated whey proteins and protein-XG mixtures were more stable than the WP emulsions, and the microparticulated whey proteins and protein-XG mixtures were more effective for decreasing the digestion rate, as shown by the stability analysis and free fatty acid release rates. These results help elucidate the influence of the interfacial structure on lipid digestion. The control of lipid digestibility within the gastrointestinal tract might be important for the design and development of reduced-fat foods and novel functional foods for controlling bioactive release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app