Add like
Add dislike
Add to saved papers

Release of lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response.

Biomedical Materials 2018 August 23
The immunomodulatory effects of lithium have been reported across a range of models and contexts. Lithium appears to have a positive effect on osteogenesis in vivo, while in vitro outcomes throughout the literature are varied. Tissue engineering approaches have rarely targeted local lithium delivery within a regenerative setting. We hypothesized that part of the positive effects of lithium in vivo may be due to an immunomodulatory effect manifesting in a local environment. To achieve a sustained lithium release from scaffold constructs, we blended lithium carbonate, a soluble salt of lithium, with the biomaterial polymer polycaprolactone (PCL). We printed constructs of PCL alone, and with 5% (5Li) and 10% (10Li) lithium carbonate. Mechanical testing revealed that mechanical properties were largely retained with lithium carbonate incorporation, and we measured a consistent release of the ion over a 7 day period. The efficacy of our construct system was then assessed using a primary mouse macrophage culture, and a differentiated osteoclast culture. We found that the lithium released from constructs had a great effect on macrophage polarization, resulting in pronounced upregulation of immunomodulatory (M2) genes, and a decrease in pro-inflammatory (M1) genes. This was reflected in cytokine expression, and illustrated through immunofluorescent staining. Osteoclast activity was greatly suppressed by the lithium incorporation, with a marked effect on gene expression and actin ring formation. Our work demonstrated an effective system for local lithium delivery, confirmed the pronounced effects that lithium has on macrophage and osteoclast response, and sets the stage for further innovations in ion release for targeted tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app