Add like
Add dislike
Add to saved papers

Chip-Assisted Single-Cell Biomarker Profiling of Heterogeneous Circulating Tumor Cells Using Multifunctional Nanospheres.

Analytical Chemistry 2018 September 5
Profiling the heterogeneous phenotypes of individual circulating tumor cells (CTCs) from patients is a very challenging task, but it paves new ways for cancer management, especially personalized anticancer therapy. Herein, we propose a chip-assisted multifunctional-nanosphere system for efficient and reliable biomarker phenotype analysis of individual heterogeneous CTCs. Red fluorescent magnetic biotargeting multifunctional nanospheres and green fluorescent biotargeting nanospheres targeting to two kinds of CTC biomarkers are used for convenient dual-fluorescence labeling of CTCs along with magnetic tags. By integrating magnetic enrichment with a size-selective single-cell-trapping microfluidic chip (SCT-chip), over 90% of CTCs, even when the concentrations is as low as 10 CTCs per milliliter of blood, can be individually trapped at highly ordered micropillars, spatially separated from the minimal residual blood cells. Such single CTCs offer easy-readout fluorescence signals, facilitating efficient identification and reliable phenotype analysis in accordance with their biomarker expressions. Therefore, the phenotypes of breast tumor cells in terms of the expression level of human epidermal-growth-factor receptor 2, an important target of clinical anticancer drugs, are accurately assessed, and over 82% of them can be classified into corresponding cell subpopulations. Furthermore, this system demonstrates successful detection and subpopulation analysis of heterogeneous CTCs from seven breast cancer patients, which provides a promising new means for single-cell profiling of CTC-biomarker phenotypes and guiding of personalized anticancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app