Add like
Add dislike
Add to saved papers

A combined approach with gene-wise normalization improves the analysis of RNA-seq data in human breast cancer subtypes.

Breast cancer (BC) is increasing in incidence and resistance to treatment worldwide. The challenges in limited therapeutic options and poor survival outcomes in BC subtypes persist because of its molecular heterogeneity and resistance to standard endocrine therapy. Recently, high throughput RNA sequencing (RNA-seq) has been used to identify biomarkers of disease progression and signaling pathways that could be amenable to specific therapies according to the BC subtype. However, there is no single generally accepted pipeline for the analysis of RNA-seq data in biomarker discovery due, in part, to the needs of simultaneously satisfying constraints of sensitivity and specificity. We proposed a combined approach using gene-wise normalization, UQ-pgQ2, followed by a Wald test from DESeq2. Our approach improved the analysis based on within-group comparisons in terms of the specificity when applied to publicly available RNA-seq BC datasets. In terms of identifying differentially expressed genes (DEGs), we combined an optimized log2 fold change cutoff with a nominal false discovery rate of 0.05 to further minimize false positives. Using this method in the analysis of two GEO BC datasets, we identified 797 DEGs uniquely expressed in triple negative BC (TNBC) and significantly associated with T cell and immune-related signaling, contributing to the immunotherapeutic efficacy in TNBC patients. In contrast, we identified 1403 DEGs uniquely expressed in estrogen positive and HER2 negative BC (ER+HER2-BC) and significantly associated with eicosanoid, notching and FAK signaling while a common set of genes was associated with cellular growth and proliferation. Thus, our approach to control for false positives identified two distinct gene expression profiles associated with these two subtypes of BC which are distinguishable by their molecular and functional attributes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app