Add like
Add dislike
Add to saved papers

Wedelolactone Enhances Odontoblast Differentiation by Promoting Wnt/β-Catenin Signaling Pathway and Suppressing NF-κB Signaling Pathway.

Wedelolactone is a multitarget natural plant compound with many pharmacological activities, including anti-inflammatory, anticancer, and antiosteoporosis. In this study, dental pulp stem cells (DPSCs) were treated with or without wedelolactone. We found that wedelolactone stimulated odontoblast differentiation and mineralization. At the molecular level, wedelolactone directly promoted the nuclear accumulation of β-catenin, and thereafter stimulated the expression of odontoblast-related marker genes containing dentin matrix protein-1 (DMP1), dentin sialophosphoprotein (DSPP), and runt-related transcription factor 2 (Runx2). Furthermore, wedelolactone upregulated the expression of IκBα and inhibited phosphonation and nuclear migration of p65. As a result, wedelolactone remarkably induced odontoblast differentiation through semaphorin 3A (Sema3A)/neuropilin-1 (NRP1) pathway-mediated β-catenin activation and nuclear factor kappa B (NF-κB) pathway inhibition. Our findings provide novel perceptions on odontogenic differentiation of DPSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app