Add like
Add dislike
Add to saved papers

Routes to Potentially Safer T 1 Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence.

ACS Nano 2018 August 29
Engineering a compact, near-infrared plasmonic nanostructure with integrated image-enhancing agents for combined imaging and therapy is an important nanomedical challenge. Recently, we showed that Au@SiO2 @Au nanomatryoshkas (NM) are a highly promising nanostructure for hosting either T1 MRI or fluorescent contrast agents with a photothermal therapeutic response in a compact geometry. Here, we show that a near-infrared-resonant NM can provide simultaneous contrast enhancement for both T1 magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI) by encapsulating both types of contrast agents in the internal silica layer between the Au core and shell. We also show that this method of T1 enhancement is even more effective for Fe(III), a potentially safer contrast agent compared to Gd(III). Fe-NM-based contrast agents are found to have relaxivities 2× greater than those found in the widely used gadolinium chelate, Gd(III) DOTA, providing a practical alternative that would eliminate Gd(III) patient exposure entirely. This dual-modality nanostructure can enable not only tissue visualization with MRI but also fluorescence-based nanoparticle tracking for quantifying nanoparticle distributions in vivo, in addition to a near-infrared photothermal therapeutic response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app