Add like
Add dislike
Add to saved papers

Citric acid reduces oral biofilm and influences the electrochemical behavior of titanium: An in situ and in vitro study.

BACKGROUND: Citric acid (CA) has been suggested as an effective antimicrobial agent against biofilms formed on titanium. However, the antimicrobial effect of CA in biofilms formed in the oral environment and its effects on the physical properties of titanium surface remain unknown. Therefore, this study evaluated the antimicrobial effect of CA on in situ biofilm, whether this treatment favors the bacteria recolonization and its effect on the electrochemical properties of titanium.

METHODS: In the in situ test, volunteers wore a palatal appliance containing titanium discs. After 7 days, the discs (N = 21) were exposed in vitro to the following treatments: immersion in 0.9% sodium chloride (control); 40% CA immersion; and 40% CA rubbing. Afterwards, these discs (N = 18) were exposed in vitro to new bacterial adhesion with Streptococcus sanguinis. New discs (N = 18) without biofilm were exposed to the treatments and subjected to electrochemical tests and surface characterization. Data were analyzed by one-way ANOVA followed by Tukey's HSD test.

RESULTS: The CA groups showed a significant reduction (≈ 5-log reduction) in the biofilm formed in situ compared with the control group (p < 0.05), but no difference was found between CA application methods (p = 0.680). The acid treatment did not favor the recolonization of bacteria (p = 0.629). CA treatment did not influence the polarization resistance and capacitance of the oxide film, but statistically enhanced the electrochemical stability of titanium.

CONCLUSION: Citric acid appears to be an effective clinical alternative for treatment of the main etiologic factor in dental implant failure, biofilm formation, enhancing electrochemical behavior of titanium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app