Add like
Add dislike
Add to saved papers

Dose build-up effects induced by delta electrons and target fragments in proton Bragg curves-measurements and simulations.

Dose build-up effects in the entrance channel of proton Bragg curves were investigated in detail by means of simulations and experiments. There are two relevant dose build-up effects. Firstly, the δ-electron build-up effect which takes place in the first few millimeters of the tissue until an equilibrium state of the forward-scattered δ-electrons is reached. Secondly, the target fragment build-up effect that covers the first centimeters in the entrance channel of the proton Bragg curve. These target fragments are created in inelastic interactions of the beam protons with the target nuclei and partially have low kinetic energies and/or high atomic numbers compared to the incident beam protons. Consequently, the target fragments possess high LET values and thus an increased RBE. However, the production cross sections relevant for target fragmentation in ion beam therapy still have large uncertainties. Therefore, in this work target fragmentation was investigated indirectly by measuring low-noise proton Bragg curves with the focus placed on their build-up regions. The measurements clearly show the magnitude and shape of the two different build-up effects. Additionally, with the application of a magnetic filter, it was possible to separate the measurement of the target fragment build-up effect from the δ-electron build-up effect. Corresponding FLUKA Monte Carlo simulations were carried out for the experimental setup. A comparison of the experimental results with the FLUKA predictions enabled the assessment of the precision of FLUKA models, e.g. the δ-electron production models and the nuclear event generators which are responsible for target fragmentation reactions. It could be shown that the relevant models worked well to reproduce both build-up effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app