Add like
Add dislike
Add to saved papers

Self-Catalytic Reaction of SO 3 and NH 3 To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation.

Sulfur trioxide (SO3 ) is one of the most active chemical species in the atmosphere, and its atmospheric fate has profound implications to air quality and human health. The dominant gas-phase loss pathway for SO3 is generally believed to be the reaction with water molecules, resulting in sulfuric acid. The latter is viewed as a critical component in the new particle formation (NPF). Herein, a new and competitive loss pathway for SO3 in the presence of abundant gas-phase ammonia (NH3 ) species is identified. Specifically, the reaction between SO3 and NH3 , which produces sulfamic acid, can be self-catalyzed by the reactant (NH3 ). In dry and heavily polluted areas with relatively high concentrations of NH3 , the effective rate constant for the bimolecular SO3 -NH3 reaction can be sufficiently fast through this new loss pathway for SO3 to become competitive with the conventional loss pathway for SO3 with water. Furthermore, this study shows that the final product of the reaction, namely, sulfamic acid, can enhance the fastest possible rate of NPF from sulfuric acid and dimethylamine (DMA) by about a factor of 2. An alternative source of stabilizer for acid-base clustering in the atmosphere is suggested, and this new mechanism for NPF has potential to improve atmospheric modeling in highly polluted regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app