Add like
Add dislike
Add to saved papers

Simple Fabrication of SnO 2 Quantum-dot-modified TiO 2 Nanorod Arrays with High Photoelectrocatalytic Activity for Overall Water Splitting.

Photoelectrochemical (PEC) water splitting has been demonstrated as a promising way to acquire clean hydrogen energy. However, the efficiency has been limited by the high recombination rate of photogenerated electron-hole pairs. Herein, we provided a simple approach to construct a novel SnO2 quantum dots (QDs) modified TiO2 nanorod arrays (NAs) by the calcination of SnCl2 -adsorbed TiO2 NAs. The photocurrent density of SnO2 QDs/TiO2 NAs exhibits about 5 times higher than that of parent TiO2 NAs at a bias of 0.4 V vs. Ag/AgCl. SnO2 QDs/TiO2 NAs also show a high photoelectrocatalytic activity for overall water splitting with an actual yield of H2 and O2 to be 27.85 and 11.87 μmol cm-2  h-1 , respectively. The excellent performance of photoanode for PEC water splitting could be attributed to its Z-scheme heterostructure for good separation efficiency and transport rate of photogenerated charge carries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app