Add like
Add dislike
Add to saved papers

pH excursions impact CHO cell culture performance and antibody N-linked glycosylation.

pH excursions exist due to frequent base addition and environmental heterogeneity in large-scale bioreactors. Such excursions could lead to suboptimal culture performance. Here we investigated the impact of pH excursions on cell culture performance and N-linked glycosylation for three MAb-producing Chinese hamster ovary cell lines. Frequent pH excursions were introduced by bolus base addition (in total 2-6% of initial volume, fixed bolus addition distributed from day 2 to 8) into small-scale bioreactors. Base addition led to increase in osmolality, pCO2 , and lactate production. Lactate production increase was mainly caused by increased culture pH due to base addition, and bolus addition led to higher glucose and lactate metabolic rates than continuous addition. For the three cell lines studied, antibody galactosylation increased with the increase in cultivating pH, correlating to the decrease in cell-specific productivity. Interestingly, pH excursions led to significantly higher galactosylation for one cell line, which also had a higher response to different cultivating pHs. On the other hand, there was no such substantial impact of pH excursions on galactosylation for the other two cell lines, both of which also had minimal response to cultivating pH. This suggests that the impact of pH excursions on antibody N-linked glycosylation is cell line specific and is closely related to cell line response to cultivating pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app