JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deficiency of alkaline SMase enhances dextran sulfate sodium-induced colitis in mice with upregulation of autotaxin.

Intestinal alkaline SMase (Alk-SMase) cleaves phosphocholine from SM, platelet-activating factor (PAF), and lysophosphatidylcholine. We recently found that colitis-associated colon cancer was 4- to 5-fold enhanced in Alk-SMase KO mice. Here, we further studied the pathogenesis of colitis induced by dextran sulfate sodium (DSS) in WT and KO mice. Compared with WT mice, KO mice demonstrated greater body weight loss, more severe bloody diarrhea, broader inflammatory cell infiltration, and more serious epithelial injury. Higher levels of PAF and lower levels of interleukin (IL)10 were identified in KO mice 2 days after DSS treatment. A greater and progressive increase of lysophosphatidic acid (LPA) was identified. The change was associated with increased autotaxin expression in both small intestine and colon, which was identified by immunohistochemistry study, Western blot, and sandwich ELISA. The upregulation of autotaxin coincided with an early increase of PAF. IL6 and TNFα were increased in both WT and KO mice. At the later stage (day 8), significant decreases in IL6, IL10, and PAF were identified, and the decreases were greater in KO mice. In conclusion, deficiency of Alk-SMase enhances DSS-induced colitis by mechanisms related to increased autotaxin expression and LPA formation. The early increase of PAF might be a trigger for such reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app