Add like
Add dislike
Add to saved papers

Notch signaling pathway suppresses CD8 + T cells activity in patients with lung adenocarcinoma.

Evolution and progression of cancer always leads to CD8+ T cells dysfunction/exhaustion. Controversy remains as to the role of Notch signaling pathway in CD8+ T cells regulation in tumorigenesis. Thus, the aim of this study was to investigate the immunomodulatory activity of Notch signaling pathway to peripheral and lung-resident CD8+ T cells in patients with lung adenocarcinoma. Forty-eight lung adenocarcinoma patients and twenty healthy individuals were enrolled in the current study, and CD8+ T cells were purified from both peripheral bloods and bronchoalveolar lavage fluids. Notch receptor mRNA expression was semi-quantified by real-time PCR. Cytolytic and noncytolytic activity of CD8+ T cells evaluated in direct and indirect contact co-culture with A549 cells in response to Notch signaling inhibition by measuring of lactate dehydrogenase release and cytokines production. Expression of Fas ligand (FasL), perforin, and granzyme B were also assessed by flow cytometry. Notch2 mRNA expression was elevated in both peripheral and lung-resident CD8+ T cells in lung adenocarcinoma patients, however, did not correlated with tumor stages or epidermal growth factor receptor mutation. Peripheral CD8+ T cells from healthy individuals exhibited stronger cytotoxicity in direct contact co-culture system, which was not influenced by Notch signaling inhibition. Moreover, suppression of Notch signaling augmented cytotoxicity of peripheral and lung-resident CD8+ T cells from lung adenocarcinoma patients in direct contact co-culture system, and promoted interferon-γ production in both systems. This process was accompanied by increased expression of FasL and perforin within CD8+ T cells. The current data revealed a potential immunosuppressive property of Notch signaling pathway to CD8+ T cells probably via inhibition of FasL and perforin in lung adenocarcinoma patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app