Add like
Add dislike
Add to saved papers

Basolateral amygdala calpain is required for extinction of contextual fear-memory.

Extinction of fear-memory is essential for emotional and mental changes. However, the mechanisms underlying extinction of fear-memory are largely unknown. Calpain is a type of calcium-dependent protease that plays a critical role in memory consolidation and reconsolidation. Whether calpain functions in extinction of fear-memory is unknown, as are the molecular mechanisms. In this study, we investigated the pivotal role of calpain in extinction of fear-memory in mice, and assessed its mechanism. Conditioned stimulation/unconditioned stimulation-conditioned stimulation paradigms combined with pharmacological methods were employed to evaluate the action of calpain in memory extinction. Our data demonstrated that intraperitoneal or intra-basolateral amygdala (BLA) injection of calpain inhibitors could eliminate extinction of fear-memory in mice. Moreover, extinction of fear-memory paradigm-activated BLA calpain activity, which degraded suprachiasmatic nucleus circadian oscillatory protein (SCOP) and phosphatase and tensin homolog (PTEN), subsequently contributing to activation of a protein kinase B (AKT)-mammalian target of the rapamycin (mTor) signaling pathway. Additionally, cAMP-response element binding protein (CREB) phosphorylation was also augmented following extinction of fear-memory. Calpain inhibitor blocked the signaling pathway activation induced by extinction of fear-memory. Additionally, intra-BLA injection of rapamycin or cycloheximide also blocked the extinction of fear-memory. Conversely, intra-BLA injection of PTEN inhibitor, bpV, reversed the effect of calpeptin on extinction of fear-memory. Together, our data confirmed the function of BLA calpain in extinction of fear-memory, likely via degrading PTEN and activating AKT-mTor-dependent protein synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app