Add like
Add dislike
Add to saved papers

Reconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog species.

Molecular Ecology 2018 October
Sex-determining mechanisms change repeatedly throughout evolution, and it is difficult to track this continual process. The Japanese soil-frog Glandirana rugosa is a remarkable evolutionary witness to the ongoing process of the evolution of sex-determining modes. The two geographic groups, designated XY and Neo-ZW, have homologous sex chromosomes, yet display opposite types of sex chromosomes, XX-XY and ZZ-ZW, respectively. These two groups are sympatric at the edges of their respective ranges in Central Japan. In this study, we discovered molecular evidence that the eastern part of the Neo-ZW group (Neo-ZW2 subgroup), which is found near the sympatric area, shares mitochondrial haplotypes with the XY group. By analysing single nucleotide polymorphism (SNP) loci, we have also discovered that the representative nuclear genome of the Neo-ZW2 subgroup shares allele clusters with both the XY group and another part of the Neo-ZW group (Neo-ZW1 subgroup), indicating a hybrid origin of the Neo-ZW2. Further analysis of sex-linked SNP loci revealed that the alleles on the W chromosomes of the Neo-ZW2 were derived mostly from X chromosomes, while alleles on the Z chromosomes originated from the Z chromosomes of the Neo-ZW1 subgroup and partly from the Y chromosomes of the XY group. Our study revealed that admixture of the two opposite sex-chromosome systems reconstructed a female heterogametic system by recycling the X chromosomes into new W chromosomes. This work offers an illustrative example of how de novo sex-chromosome systems can arise by recycling material from ancestral sex chromosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app