Add like
Add dislike
Add to saved papers

Using Gaussian Boson Sampling to Find Dense Subgraphs.

Boson sampling devices are a prime candidate for exhibiting quantum supremacy, yet their application for solving problems of practical interest is less well understood. Here we show that Gaussian boson sampling (GBS) can be used for dense subgraph identification. Focusing on the NP-hard densest k-subgraph problem, we find that stochastic algorithms are enhanced through GBS, which selects dense subgraphs with high probability. These findings rely on a link between graph density and the number of perfect matchings-enumerated by the Hafnian-which is the relevant quantity determining sampling probabilities in GBS. We test our findings by constructing GBS-enhanced versions of the random search and simulated annealing algorithms and apply them through numerical simulations of GBS to identify the densest subgraph of a 30 vertex graph.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app