Add like
Add dislike
Add to saved papers

Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at sqrt[s_{NN}]=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV.

We report measurements of the nuclear modification factor R_{CP} for charged hadrons as well as identified π^{+(-)}, K^{+(-)}, and p(p[over ¯]) for Au+Au collision energies of sqrt[s_{NN}]=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-p_{T} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton R_{CP} at high p_{T} does depend on the collision energy, neither the proton nor the antiproton R_{CP} at high p_{T} exhibit net suppression at any energy. A study of how the binary collision-scaled high-p_{T} yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app