Add like
Add dislike
Add to saved papers

Nonmonotonic Scission and Branching Free Energies as Functions of Hydrotrope Concentration for Charged Micelles.

Using coarse-grained molecular dynamics simulations and an umbrella sampling method that uses local surfactant density as a reaction coordinate, we directly calculate, for the first time, both the scission and branching free energies of a model charged micelle [cationic cetyltrimethylammonium chloride (CTAC)] in the presence of inorganic and organic salts (hydrotropes). We find that while inorganic salt only weakly affects the micelle scission energy, organic hydrotropes produce a strong, nonmonotonic dependence of both scission energy and branching on salt concentration. The nonmonotonicity in scission energy is traced to a competition between electrostatic screening of the repulsions among the surfactant head groups and thinning of the micellar core, which result from attachment of the hydrotropes to the micelle surface. We are able to correlate the nonmonotonicity in the scission energy of CTAC micelles with the peak observed experimentally in viscosity versus hydrotrope concentration and the location of this peak in CTAC solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app