Add like
Add dislike
Add to saved papers

Ultrafast Surface State Spin-Carrier Dynamics in the Topological Insulator Bi_{2}Te_{2}Se.

Topological insulators are promising candidates for optically driven spintronic devices, because photoexcitation of spin polarized surface states is governed by angular momentum selection rules. We carry out femtosecond midinfrared spectroscopy on thin films of the topological insulator Bi_{2}Te_{2}Se, which has a higher surface state conductivity compared to conventionally studied Bi_{2}Se_{3} and Bi_{2}Te_{3}. Both charge and spin dynamics are probed utilizing circularly polarized light. With a sub-band-gap excitation, clear helicity-dependent dynamics is observed only in thin (<20  nm) flakes. On the other hand, such dependence is observed for both thin and thick flakes with above-band-gap excitation. The helicity dependence is attributed to asymmetric excitation of the Dirac-like surface states. The observed long-lasting asymmetry over 10 ps even at room temperature indicates low backscattering of surface state carriers which can be exploited for spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app