JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperhomocysteinemia Accelerates Acute Kidney Injury to Chronic Kidney Disease Progression by Downregulating Heme Oxygenase-1 Expression.

AIMS: The risk factors promoting acute kidney injury (AKI) to chronic kidney disease (CKD) progression remain largely unknown. The aim of the present study was to investigate whether hyperhomocysteinemia (Hhcy) accelerates the development of renal fibrosis after AKI.

RESULTS: Hhcy aggravated ischemia-reperfusion-induced AKI and the subsequent development of renal fibrotic lesions characterized by excessive extracellular matrix deposition. Mechanistically, the RNA binding protein human antigen R (HuR) bound to the 3'-untranslated region (3'-UTR) of heme oxygenase-1 (HO-1) messenger RNA (mRNA). Homocysteine (Hcy) downregulated HuR expression, reduced the binding of HuR to the 3'-UTR of HO-1, and thereafter decreased HO-1 expression. Administration of the HO-1 inducer cobalt protoporphyrin-IX significantly hindered Hhcy-augmented reactive oxygen species production and renal fibrotic lesions. Innovation and Conclusion: These data indicate that Hhcy might be a novel risk factor that promotes AKI to CKD progression. Lowering Hcy level or HO-1 induction might be a potential therapeutic strategy to improve the outcome of AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app