Add like
Add dislike
Add to saved papers

Selective Electroless Metallization of Micro- and Nanopatterns via Poly(dopamine) Modification and Palladium Nanoparticle Catalysis for Flexible and Stretchable Electronic Applications.

The authors report a new patterned electroless metallization process for creating micro- and nanoscale metallic structures on polymeric substrates, which are essential for emerging flexible and stretchable optical and electronic applications. This novel process features a selective adsorption of catalytic Pd nanoparticles (PdNPs) on a lithographically masked poly(dopamine) (PDA) interlayer in situ polymerized on the substrates. The moisture-resistant PDA layer has excellent stability under a harsh electroless plating bath, which enables electroless metallization on versatile substrate materials regardless of their hydrophobicity, and significantly strengthens the attachment of electroless plated metallic structures on the polymeric substrates. Prototype devices fabricated using this PDA-assisted electroless metallization patterning exhibit superior mechanical stability under high bending and stretching stress. The lithographic patterning of the PDA spatially confines the adsorption of PdNPs and reduces defects due to random adsorption of catalytic particles on the undesired area. The high resolution of the lithographic patterning enables the demonstration of a copper micrograting pattern with a linewidth down to 2 μm and a silver plasmonic nanodisk array with a 500 nm pitch. A copper mesh is also fabricated using our new patterned electroless metallization process and functions as flexible transparent electrodes with >80% visible transmittance and <1 Ω sq-1 sheet resistance. Moreover, flexible and stretchable dynamic electroluminescent displays and functional flexible printed circuits are demonstrated to show the promising capability of our fabrication process in versatile flexible and stretchable electronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app