Add like
Add dislike
Add to saved papers

Anodal transcranial direct current stimulation over the posterior parietal cortex reduces the onset time to the rubber hand illusion and increases the body ownership.

The body ownership induced by the rubber hand illusion (RHI) has been related to a neural network involving a frontal-parietal circuit. Previous functional neuroimaging studies have demonstrated neural activation in the parietal area relative to the multisensory integration processing and to the recalibration of the felt position of body while a ventral premotor cortex activation has been linked to bodily self-attribution during the RHI. Our study aimed to investigate the effects of transcranial direct current stimulation (tDCS) on the posterior parietal cortex (PPC) or on the premotor cortex (PMv) during RHI to address the specific roles of these two brain areas in the illusion. 156 young adult participants (21.2 ± 3.13 years old; all right-handed) were enrolled for this between-subjects design experiment. Participants received anodal, cathodal and sham tDCS in three different sessions on the right PPC or right PMv and experienced visual-tactile stimulation from the brushes touching the rubber hand and their own left hand in synchronous or asynchronous manner. The RHI was quantified by the (1) onset time for the feeling of body ownership of the rubber hand, (2) proprioceptive drift, and (3) questionnaire about the intensity of the illusion as reported by the participant. All subjects felt the RHI during the synchronous condition. However, we found that the illusion onset time can be modulated by the anodal tDCS condition on the PPC: anodal tDCS decreased the illusion onset time and the subjective experience of body ownership. These findings suggest that the parietal area plays a crucial role in the speed of visual and tactile multisensory integration in the RHI and introduce tDCS as technique that can accelerate the time to integrate an artificial body part and increased the perception of body ownership.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app