Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Ultrasound visualization of sacrocolpopexy polyvinylidene fluoride meshes containing paramagnetic Fe particles compared with polypropylene mesh.

INTRODUCTION AND HYPOTHESIS: Paramagnetic Fe particles can be added during synthetic mesh production to allow visibility on magnetic resonance imaging. Our aim was to evaluate whether transperineal ultrasound (TPUS) allows visualization, measurement, and characterization of polyvinylidene fluoride (PVDF mesh) containing Fe particles compared with regular polypropylene (PP) meshes used for sacrocolpopexy.

METHODS: Women up to 1.5 years after laparoscopic sacrocolpopexy who were implanted with a PP or PVDF mesh underwent clinical examination and 2D, 3D, and 4D TPUS. Acquired volumes were analyzed offline for mesh position at rest and maximal Valsalva and for mesh dimensions and characteristics, with the operator blinded to group assignment. The two groups were compared.

RESULTS: There were 17 women in the PP and 25 in the PVDF mesh group, without differences in baseline demographics. None had significant prolapse, recurrence, symptoms, or complications. On TPUS, mesh was visible in all patients both caudally (perineal) and cranially but was more echogenic in the PVDF mesh group. Mesh length from distal to proximal that was visible on TPUS was longer for PVDF mesh, for both anterior and posterior vaginal arms (all P < 0.05), and for mesh above the vaginal apex (P = 0.002). The inferior aspects of the mesh showed areas of double mesh layers, suggesting folding in 80% of women in both groups, without symptoms.

CONCLUSIONS: PVDF mesh permits clearer visualization and is seen over a longer stretch on TPUS, with longer visible mesh arms. The latter can be due to differences in operative technique, presence of microparticles, implant textile structure, or patient characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app