JOURNAL ARTICLE
META-ANALYSIS
Add like
Add dislike
Add to saved papers

Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials.

Our network meta-analysis analyzed the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on fracture risk. By combining data from randomized controlled trials, we found that GLP-1 RAs were associated with a decreased bone fracture risk, and exenatide is the best option agent with regard to the risk of fracture. This study is registered with PROSPERO (CRD42018094433).

INTRODUCTION: Data on the effects of GLP-1 RAs on fracture risk are conflicted. This study aimed to analyze the available evidence on the effects of GLP-1 RAs on fracture risk in type 2 diabetes mellitus patients.

METHODS: Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. All analyses were performed with STATA 12.0 and R software (Version 3.4.4). We estimated the risk ratio (RR) and 95% confidence interval (CI) by combining RRs for fracture effects of included trials.

RESULTS: There were 54 eligible random control trials (RCTs) with 49,602 participants, including 28,353 patients treated with GLP-1 RAs. Relative to placebo, exenatide (RR, 0.17; 95% CI 0.03-0.67) was associated with lowest risk of fracture among other GLP-1 RAs. Exenatide had the highest probability to be the safest option with regard to the risk of fracture (0.07 ‰), followed by dulaglutide (1.04%), liraglutide (1.39%), albiglutide (5.61%), lixisenatide (8.07%), and semaglutide (18.72%). A statistically significant inconsistency was observed in some comparisons.

CONCLUSION: The Bayesian network meta-analysis suggests that GLP-1 RAs were associated with a decreased bone fracture risk compared to users of placebo or other anti-hyperglycemic drugs in type 2 diabetes mellitus patients, and exenatide is the best option agent with regard to the risk of fracture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app