Add like
Add dislike
Add to saved papers

Deciphering pleiotropy: How complex genes regulate behavior.

The genetic underpinnings of animal behavior are exceedingly complex. Behavioral phenotypes are commonly regulated by many genes, and the behavioral effects of a gene often dependent on environmental conditions and genetic background. To complicate the study of behavioral genetics further, many genes that regulate behavioral phenotypes are themselves very complex genes, with several gene products and functions. One example of such a complex gene is the foraging gene in D. melanogaster . foraging influences many behaviors in the fruit fly, and the key to its effects likely lies in its complex molecular structure. We've recently found that expression levels of a small subset of transcripts of the foraging gene underlie the behavioral differences seen in adult foraging patterns of the rover and sitter D. melanogaster strains. Here we comment on the larger implications of this and other findings on gene regulation and pleiotropy in behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app