Add like
Add dislike
Add to saved papers

New Insight for Surface Chemistries in Ultra-thin Self-assembled Monolayers Modified High-voltage Spinel Cathodes.

Scientific Reports 2018 August 7
The electrochemical properties of the interface between the spinel LiNi0.5 Mn1.5 O4-δ (LNMO4-δ ) cathodes and ethylene carbonate-dimethyl carbonate (EC-DMC) electrolyte containing 1 M of LiPF6 have been investigated to achieve high-voltage durability of LNMO4-δ /graphite full cells. Coating the LNMO4-δ crystal surface by a fluoroalkylsilane self-assembled monolayer with a thickness below 2 nm resulted in a capacity retention of 94% after 100 cycles at a rate of 1 C and suppression of capacity fading for both the cathode and anode of the full cell. The observed effect is likely caused by the inhibited oxidative decomposition of EC-DMC electrolyte and vinylene carbonate (VC) species at the LNMO4-δ crystal surface and formation of a stable VC solid electrolyte interface near the anode. Moreover, the results obtained via photoelectron spectroscopy and density-functional calculations revealed that the increase in the work function of the LNMO4-δ crystal surface due to the formation of Si-O-Mn species primary contributed to the inhibition of the oxidative decomposition of the electrolyte and VC molecules at the cathode/electrolyte interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app