Add like
Add dislike
Add to saved papers

Hmgb3 Induces the Differentiation of Uterine Stromal Cells Through Targeting Ptn.

Reproductive Sciences 2018 August 7
Uterine decidualization is crucial for placenta formation and pregnancy maintenance. Although previous studies have reported that high mobility group box 3 (Hmgb3) is involved in the regulation of cellular proliferation and differentiation, little is known regarding its physiological role in uterine decidualization. Here, in situ hybridization result exhibited a dynamic expression pattern of Hmgb3 messenger RNA (mRNA) during early gestation, and it was mainly localized to the decidua on days 6 to 8 of gestation. Consistently, elevated Hmgb3 expression was noted in the decidualizing stromal cells after intraluminal oil infusion. In uterine luminal epithelium of ovariectomized mice, estrogen induced the accumulation of Hmgb3 mRNA, which was dependent on the existence of implanting blastocyst. Simultaneously, Hmgb3 could stimulate the proliferation of uterine stromal cells and promote the expression of Prl8a2, a reliable marker for stromal cell differentiation. Further analysis evidenced that Hmgb3 might modulate the expression of pleiotropin (Ptn) in uterine stromal cells. Moreover, silencing of Ptn could impede the upregulation of Prl8a2 elicited by Hmgb3 overexpression, while overexpression of Ptn reversed the repressive effects of Hmgb3 siRNA on Prl8a2 expression. Collectively, Hmgb3 may direct uterine decidualization through targeting Ptn.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app