Add like
Add dislike
Add to saved papers

Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses.

Influenza viruses cause significant morbidity and mortality and pose a substantial threat to public health. Vaccination represents the principle means of preventing influenza virus infection. Current vaccine approaches are hindered by the need to routinely reformulate vaccine compositions in an effort to account for the progressive antigenic changes that occur as influenza viruses circulate in the human population. In this study, we evaluated chimeric virus-like particle (cVLP) vaccines containing conserved elements of influenza proteins (HL5M2e (HA stem gene with 5M2e gene inserted) and NP), with or without glycosylphosphatidylinositol-anchored CCL28 (GPI-CCL28) and/or GM-CSF (GPI-GM-CSF) fusion proteins as molecular adjuvants. cVLPs elicited strong humoral and cellular immune responses against homologous and heterologous viruses, and improved survival following lethal challenge with both homologous and heterologous viruses. Inclusion of GPI-anchored adjuvants in cVLP vaccines augmented the generation of influenza-specific humoral and cellular immune responses in mice in comparison to the non-adjuvanted cVLP vaccines. VLPs containing GPI-anchored adjuvants reduced morbidity and improved survival to lethal challenge with homologous and heterologous influenza viruses. This work suggests that VLP vaccines incorporating conserved influenza virus proteins and GPI-anchored molecular adjuvants may serve as a platform for a broadly protective "universal" influenza vaccine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app