Add like
Add dislike
Add to saved papers

Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation.

Historically, bispecific antibodies have been constructed through the genetic fusion of additional binding domains to the constant domains of the antibody heavy- or light chains. We present an alternative method for the introduction of additional functional domains to an antibody: site-specific chemo-enzymatic conjugation. This method relies on the combination of site-specific transpeptidases and bioorthogonal chemistry. Transpeptidases are used to site-specifically introduce chemical handles, which can then be used to couple new functional groups by means of a bioorthogonal chemical reaction. We demonstrate site-specific chemo-enzymatic linkage using the transpeptidase sortase (hereafter: sortase) and either a strain-promoted alkyne-azide cycloaddition (SPAAC) or an inverse-electron demand Diels-Alder reaction. Other transpeptidases and bioorthogonal reactions suitable for this purpose exist. Site-specific chemo-enzymatic linkage is a modular method. After introduction of a chemical handle in the antibody, any functional group of interest may then be attached. The modularity of this conjugation method allows for a 'plug-and-play' approach to prepare new antibody conjugates, thus bypassing the need for (potentially) laborious genetic fusions. Moreover, as sortase is used to specifically modify the exact C-termini of the antibody chains, the final product will be fused in a C-to-C orientation, which is impossible to achieve by genetic manipulations alone. Here we demonstrate the utility of site-specific chemo-enzymatic conjugation to prepare antibody heterodimers, bispecific T-cell engager antibodies, and immunocytokines, discussing purification methods and describing possible pitfalls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app